Induction Motor Parameter Identification Using a Gravitational Search Algorithm
نویسندگان
چکیده
The efficient use of electrical energy is a topic that has attracted attention for its environmental consequences. On the other hand, induction motors represent the main component in most industries. They consume the highest energy percentages in industrial facilities. This energy consumption depends on the operation conditions of the induction motor imposed by its internal parameters. Since the internal parameters of an induction motor are not directly measurable, an identification process must be conducted to obtain them. In the identification process, the parameter estimation is transformed into a multidimensional optimization problem where the internal parameters of the induction motor are considered as decision variables. Under this approach, the complexity of the optimization problem tends to produce multimodal error surfaces for which their cost functions are significantly difficult to minimize. Several algorithms based on evolutionary computation principles have been successfully applied to identify the optimal parameters of induction motors. However, most of them maintain an important limitation: They frequently obtain sub-optimal solutions as a result of an improper equilibrium between exploitation and exploration in their search strategies. This paper presents an algorithm for the optimal parameter identification of induction motors. To determine the parameters, the proposed method uses a recent evolutionary method called the gravitational search algorithm (GSA). Different from most of the existent evolutionary algorithms, the GSA presents a better performance in multimodal problems, avoiding critical flaws such as the premature convergence to sub-optimal solutions. Numerical simulations have been conducted on several models to show the effectiveness of the proposed scheme.
منابع مشابه
ارزیابی عملکرد الگوریتمهای فراابتکاری در تخمین پارامترهای ساختاری موتور القایی قفسه سنجابی
Induction motors are so important in industry, so their protection and maintenance seem a vital issue. Continuous control of structural parameter of such motors is the way that can protect them. Appearance of a small problem in motor can change the value of structural parameter of squirrel cage induction motor, such as; resistances of stator and rotor, inductances of stator an...
متن کاملParameters Assignment of Electric Train Controller by Using Gravitational Search Optimization Algorithm
The speed profile of the train will be determined according to criteria such as safety, travel convenience, and the type of electric motor used for traction. Due to the passengers and cargo on the train, the electric train load is constantly changing. This will require reassigning the speed controller’s parameters of the electric train. For this purpose, the Gravitational Search optimization Al...
متن کاملGravitational Search Algorithm to Solve the K-of-N Lifetime Problem in Two-Tiered WSNs
Wireless Sensor Networks (WSNs) are networks of autonomous nodes used for monitoring an environment. In designing WSNs, one of the main issues is limited energy source for each sensor node. Hence, offering ways to optimize energy consumption in WSNs which eventually increases the network lifetime is strongly felt. Gravitational Search Algorithm (GSA) is a novel stochastic population-based meta-...
متن کاملUrban Growth Modeling using Integrated Cellular Automata and Gravitational Search Algorithm (Case Study: Shiraz City, Iran)
Cities are growing and encountering many changes over time due to population growth and migration. Identification and detection of these changes play important roles in urban management and sustainable development. Urban growth models are divided into two main categories: first cellular models which are further divided into experimental, dynamic, and integrated models and second vector models. ...
متن کاملArtificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers
دوره 5 شماره
صفحات -
تاریخ انتشار 2016